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Coalescent models describe the distribution of ancestry in a population under
some assumptions on the variation in the parameter © = 2Ny, with N being
the number of alleles in the population and p the neutral mutation rate. The
present document gives the likelihood functions and some computational details
for several models with © varying through time. These models are available in
coalescentMCMC as R functions (see below).

The general mathematical framework is given by Griffiths & Tavaré [1]. If
© is constant, the probability of observing the coalescent times t¢1,...,t, is:
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where t; = 0 is the present time (¢; < to < ... <t,). Note that ¢;11 — ¢; is the
ith coalescent interval (i = 1,...,n — 1). The general formula for O(¢) varying
through time is:
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Four specific temporal models are considered below. We denote the time to
the most recent ancestor as Tvreca (= tn)-

1 Models

The exponential growth model is O(t) = Ogeft, where O is the value of © at
present and p is the population growth rate [2]. The linear model is formulated
as O(t) = Og + t(O1rea — ©0)/TMmrca- This model, like the previous one, has
two parameters: ©p and Oy pc,-

The third model (step model) assumes two constant values of © before and
after a point in time denoted as 7:
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The last model (double exponential growth model) assumes that the popula-
tion experienced two different phases of exponential growth:
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which reduces to the first model if p; = ps. These two last models have three
parameters.

1.1 Constant-O Model
The log-likelihood is:
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Its partial derivative with respect to O is:
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which, after setting 01n L/0© = 0 can be solved to find the maximum likelihood
estimator (MLE):
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Under the normal approximation of the likelihood function, the variance of
O is calculated through the second derivative of In L:
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and:
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This estimator is implemented in pegas with the function theta.tree.

1.2 Exponential Growth Model

The integral in equation (1) is:

/t1+1 1 d 1 (et ot
U =———(e Pt —e Ph)
¢, O(u) p©o

leading to the log-likelihood:
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with its first partial derivatives being;:

n—1 .
OlnL _ Z*i B n—i+1 712(e*pti+1 767Pti),
6@0 o1 @0 2 p@o
n—1 .
JOln L n—z—l—l) 1 { 1, _ . o 1 ot ot
= —tiiq + — | == (e7Ptitr — TPl 4 (e Pl e Pl
D SRR e A )+ 5 (tons )

1.3 Linear Growth Model

We define £ = (Onypea — ©0)/TMrca, s0 O(f) = ©¢ + xt. The integral in
equation (1) is:
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The log-likelihood is thus:
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1.4 Step Model

It is easier to calculate the integral in equation 1 with the difference:
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The integral from the origin is:
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This is then plugged into equation 1 with a simple Dirac delta function.

1.5 Double Exponential Growth Model
In this model the inverse of ©(t) is:
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Again, it is easier to calculate the integral in equation (1) with equation (2).
The integral from the origin is:
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This is then plugged into equation (1) with a simple Dirac delta function.

2 Simulation of Coalescent Times

It is possible to simulate coalescent times from a time-dependent model by
rescaling a set of coalescent times simulated with constant ©, denoted as ¢,

with:
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This gives for the exponential growth model [2]:
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for the linear growth model:

t' =t + t*(OTypea/O0 — 1)/ TMrca,
for the step model:
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and for the exponential double growth model:
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3 Implementation in coalescentMCMC
Five functions are available in coalescentMCMC which compute the likelihood
of the constant-© model as well as the four above ones:

dcoal(bt, theta, log = FALSE)

dcoal.time(bt, thetal, rho, log = FALSE)
dcoal.linear(bt, thetaO, thetaT, TMRCA, log = FALSE)
dcoal.step(bt, thetalO, thetal, tau, log = FALSE)
dcoal.time2(bt, thetal, rhol, rho2, tau, log = FALSE)

The two arguments common to all functions are:
bt: a vector of branching times;

log: a logical value, if TRUE the values are returned log-transformed which is
recommended for computing log-likelihoods.

The other arguments are the parameters of the models.
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