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Coalescent models describe the distribution of ancestry in a population under
some assumptions on the variation in the parameter Θ = 2Nµ, with N being
the number of alleles in the population and µ the neutral mutation rate. The
present document gives the likelihood functions and some computational details
for several models with Θ varying through time. These models are available in
coalescentMCMC as R functions (see below).

The general mathematical framework is given by Gri�ths & Tavaré [1]. If
Θ is constant, the probability of observing the coalescent times t1, . . . , tn is:
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where t1 = 0 is the present time (t1 < t2 < . . . < tn). Note that ti+1 − ti is the
ith coalescent interval (i = 1, . . . , n− 1). The general formula for Θ(t) varying
through time is:

n−1∏
i=1

(
n− i+ 1

2

)
1

Θ(ti+1)
exp

[
−
(
n− i+ 1

2

)∫ ti+1

ti

1

Θ(u)
du

]
(1)

Four speci�c temporal models are considered below. We denote the time to
the most recent ancestor as TMRCA (= tn).

1 Models

The exponential growth model is Θ(t) = Θ0e
ρt, where Θ0 is the value of Θ at

present and ρ is the population growth rate [2]. The linear model is formulated
as Θ(t) = Θ0 + t(ΘTMRCA

− Θ0)/TMRCA. This model, like the previous one, has
two parameters: Θ0 and ΘTMRCA

.
The third model (step model) assumes two constant values of Θ before and

after a point in time denoted as τ :

Θ(t) =

{
Θ0 t ≤ τ
Θ1 t > τ

The last model (double exponential growth model) assumes that the popula-
tion experienced two di�erent phases of exponential growth:
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Θ(t) =

{
Θ0e

ρ1t t ≤ τ
Θ(τ)eρ2(t−τ) = Θ0e

ρ2t+(ρ1−ρ2)τ t > τ

which reduces to the �rst model if ρ1 = ρ2. These two last models have three
parameters.

1.1 Constant-Θ Model

The log-likelihood is:
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Its partial derivative with respect to Θ is:
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which, after setting ∂ lnL/∂Θ = 0 can be solved to �nd the maximum likelihood
estimator (MLE):
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Under the normal approximation of the likelihood function, the variance of
Θ̂ is calculated through the second derivative of lnL:
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This estimator is implemented in pegas with the function theta.tree.

1.2 Exponential Growth Model

The integral in equation (1) is:∫ ti+1

ti

1

Θ(u)
du = − 1

ρΘ0
(e−ρti+1 − e−ρti),

leading to the log-likelihood:
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with its �rst partial derivatives being:
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1.3 Linear Growth Model

We de�ne κ = (ΘTMRCA
− Θ0)/TMRCA, so Θ(t) = Θ0 + κt. The integral in

equation (1) is:
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The log-likelihood is thus:
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1.4 Step Model

It is easier to calculate the integral in equation 1 with the di�erence:∫ ti+1

ti

1

Θ(u)
du =

∫ ti+1

0

1

Θ(u)
du−

∫ ti

0

1

Θ(u)
du. (2)

The integral from the origin is:

∫ t

0

1

Θ(u)
du =


t

Θ0
t ≤ τ

τ

Θ0
+

t− τ

Θ1
t > τ.

This is then plugged into equation 1 with a simple Dirac delta function.

1.5 Double Exponential Growth Model

In this model the inverse of Θ(t) is:

1

Θ(t)
=


e−ρ1t

Θ0
t ≤ τ

e−ρ2t−(ρ1−ρ2)τ

Θ0
t > τ

Again, it is easier to calculate the integral in equation (1) with equation (2).
The integral from the origin is:
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∫ t

0

1

Θ(u)
du =


− 1

ρ1Θ0
(e−ρ1t − 1) t ≤ τ

− 1

ρ1Θ0
(e−ρ1τ − 1)− 1

ρ2Θ0
[e−ρ2t−(ρ1−ρ2)τ − e−ρ1τ ] t ≥ τ

This is then plugged into equation (1) with a simple Dirac delta function.

2 Simulation of Coalescent Times

It is possible to simulate coalescent times from a time-dependent model by
rescaling a set of coalescent times simulated with constant Θ, denoted as t,
with:

t′ =

∫ t

0

Θ(u)du

Θ(0)
.

This gives for the exponential growth model [2]:

t′ =
eρt − 1

ρ
,

for the linear growth model:

t′ = t+ t2(ΘTMRCA
/Θ0 − 1)/TMRCA,

for the step model:

t′ = τ + (t− τ)Θ1/Θ0 if t > τ,

and for the exponential double growth model:

t′ =


eρ1t − 1

ρ1
t ≤ τ

eρ1τ − 1

ρ1
+

eρ2t+(ρ1−ρ2)τ − eρ1τ

ρ2
t ≥ τ

3 Implementation in coalescentMCMC

Five functions are available in coalescentMCMC which compute the likelihood
of the constant-Θ model as well as the four above ones:

dcoal(bt, theta, log = FALSE)

dcoal.time(bt, theta0, rho, log = FALSE)

dcoal.linear(bt, theta0, thetaT, TMRCA, log = FALSE)

dcoal.step(bt, theta0, theta1, tau, log = FALSE)

dcoal.time2(bt, theta0, rho1, rho2, tau, log = FALSE)

The two arguments common to all functions are:

bt: a vector of branching times;

log: a logical value, if TRUE the values are returned log-transformed which is
recommended for computing log-likelihoods.

The other arguments are the parameters of the models.
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