
Package: tigers (via r-universe)
October 17, 2024

Version 0.1-3.3

Date 2024-09-17

Title Integration of Geography, Environment, and Remote Sensing

Imports stats

ZipData no

Description Handling and manipulation polygons, coordinates, and other
geographical objects. The tools include: polygon areas,
barycentric and trilinear coordinates (Hormann and Floater,
2006, <doi:10.1145/1183287.1183295>), convex hull for polygons
(Graham and Yao, 1983, <doi:10.1016/0196-6774(83)90013-5>),
polygon triangulation (Toussaint, 1991,
<doi:10.1007/BF01905693>), great circle and geodesic distances,
Hausdorff distance, and reduced major axis.

License GPL-3

URL https://github.com/emmanuelparadis/tigers

BugReports https://github.com/emmanuelparadis/tigers/issues

Repository https://emmanuelparadis.r-universe.dev

RemoteUrl https://github.com/emmanuelparadis/tigers

RemoteRef HEAD

RemoteSha 563948b60ac118d102a3fa54f5d8420dde35fe83

Contents
tigers-package . 2
Anduki . 3
area . 3
axisMap . 4
barycoords . 5
buffer . 7
chullPolygon . 9
convexPolygonOverlap . 10

1

https://doi.org/10.1145/1183287.1183295
https://doi.org/10.1016/0196-6774(83)90013-5
https://doi.org/10.1007/BF01905693
https://github.com/emmanuelparadis/tigers
https://github.com/emmanuelparadis/tigers/issues

2 tigers-package

distance_to_line . 11
fast2waytable . 12
geod . 13
geoTrans . 14
great_circle_line . 16
HausdorffDistance . 17
haveOverlap . 18
is.insidePolygon . 19
lonlat2ECEF . 20
lonlat2UTM . 21
polygon2mask . 22
polygonOverlap . 23
random_point_in_triangle . 25
redundantVertices . 26
RMA . 28
rose . 29
triangulate . 29
trilinear2Cartesian . 31
wl2col . 32

Index 35

tigers-package Integration of Geography, Environment, and Remote Sensing

Description

tigers provides functions for manipulating polygons, coordinates, . . .

All the tools programmed in tigers are “class-free”: they work on numeric vectors or matrices (even
data frames) that store coordinates. So the functions in the present package can easily be interfaced
with other packages such as terra, sf, or sp.

The majority of the computations done by tigers are performed by efficient C code which could be
interfaced with other languages (e.g., Python).

The complete list of functions can be displayed with library(help = tigers).

Author(s)

Emmanuel Paradis

Maintainer: Emmanuel Paradis <Emmanuel.Paradis@ird.fr>

Anduki 3

Anduki Anduki Forest Reserve

Description

A set of coordinates delimiting the Anduki Forest Reserve in Brunei.

Usage

data(Anduki)

Format

A two-column matrix giving the coordinates in degrees (longitude and latitude, respectively).

Source

WDPA: World Database of Protected Areas. April 2024.

area Area of Polygon

Description

This function computes the area of a polygon with Euclidean coordinates (e.g., UTM).

Usage

area(x, y = NULL)

Arguments

x, y the coordinates of the points given in the usual way in R.

Details

The unit of the area are the squared unit of input coordinates by default.

Value

a single numeric value giving the area of the polygon.

Author(s)

Emmanuel Paradis

4 axisMap

See Also

geod

Examples

XY <- rbind(c(0, 0),
c(1, 0),
c(.25, .25),
c(.5, .5),
c(1.2, .8),
c(1, .78),
c(0, 1))

area(XY)

axisMap Draw axes on Maps

Description

Draw checkerboard-style axes on a map with appropriate scales and annotations.

Usage

axisMap(latitude = FALSE, width = 0.05, len = 1,
cols = c("black", "white"), ...)

Arguments

latitude by default axes are drawn for the longitudes (above and below the map). Use
latitude = TRUE to draw axes for the latitudes (left and right sides of the map).

width the width of the bands.

len the length (increment) of the bands.

cols the alternate colours of the bands.

... further arguments passed to axis (see examples).

Details

The axes are drawn as bands of width given by the argument of the same name and alternate colors
according to len.

Author(s)

Emmanuel Paradis

barycoords 5

Examples

n <- 100
plot(runif(n, -180, 180), runif(n, -90, 90), pch = 3)
axisMap(len = 10)
'las' is passed with '...'
axisMap(TRUE, len = 10, las = 0)

barycoords Computes Barycentric Coordinates

Description

The barycentric coordinates of a point inside a polygon are weighted coordinates of the vertices of
this polygon. The algorithm implemented in this function works for any concave or convex polygon
(Hormann and Floater, 2006).

Usage

barycoords(XY, point)

Arguments

XY A two-column matrix giving the coordinates of a polygon.

point a vector with two values giving the coordinates of a point.

Details

If the polygon is a triangle, the trilinear2Cartesian can be used instead.

The polygon must be open (see is.open), and can be either in clockwise or in counterclockwise
order (see is.clockwise).

For the moment, the function is not vectorized with respect to point, so it must be called for each
point separately (see examples). This is likely to change in the future.

Value

a numeric vector giving the barycentric coordinates of the point (second argument). The length of
the returned vector is equal to the number of vertices in the polygon (first argument).

Author(s)

Emmanuel Paradis

References

Hormann, K. and Floater, M. S. (2006) Mean value coordinates for arbitrary planar polygons. ACM
Transactions on Graphics 25, 1424–1441. <doi:10.1145/1183287.1183295>

6 barycoords

See Also

trilinear2Cartesian

Examples

a square:
xy <- cbind(c(0, 1, 1, 0), c(0, 0, 1, 1))

a small function to get the coordinates directly:
f <- function(Pxy) barycoords(xy, Pxy)
the CMYK scale:
F <- col2rgb(c("cyan", "magenta", "yellow", "black"))

n <- 1e5L
random points in the square
Pxys <- matrix(runif(2 * n), n, 2)
system.time(res <- t(apply(Pxys, 1, f))) # < 1 sec
colnames(res) <- as.character(1:4)

all rows should (approximately) sum to one:
all.equal(rowSums(res), rep(1, n), tol = 1e-15)

transform the barycentric coordinates into colours:
COLS <- t(F %*% t(res)) / 255
rgbCOLS <- apply(COLS, 1, function(x) do.call(rgb, as.list(x)))
add transparency:
rgbCOLS <- paste0(rgbCOLS, "33")
plot the results:
plot(0:1, 0:1, "n", asp = 1, ann = FALSE, axes = FALSE)
points(Pxys, pch = ".", col = rgbCOLS, cex = 20)
the visual effect is nicer with n <- 1e6L above and cex = 7
in the last command

the example below follows the same logic than the previous one

an 8-vertex polygon:
xy <- cbind(c(0, 0.5, 1, 3, 1, 0.5, 0, -2),

c(0, -2, 0, 0.5, 1, 3, 1, 0.5))

random points in the square and in the 4 triangles:
Pxys <- rbind(matrix(runif(2 * n), n, 2),

rpit(n, xy[1:3,]),
rpit(n, xy[3:5,]),
rpit(n, xy[5:7,]),
rpit(n, xy[c(7:8, 1),]))

system.time(res <- t(apply(Pxys, 1, f))) # < 5 sec

colnames(res) <- as.character(1:8)
F <- col2rgb(c("black", "red", "orange", "green",

"yellow", "blue", "purple", "white"))

buffer 7

F <- col2rgb(rainbow(8)) # alternative
COLS <- t(F %*% t(res)) / 255.001
rgbCOLS <- apply(COLS, 1, function(x) do.call(rgb, as.list(x)))
rgbCOLS <- paste0(rgbCOLS, "33") # add transparency
plot(xy, , "n", asp = 1, ann = FALSE, axes = FALSE)
points(Pxys, pch = ".", col = rgbCOLS, cex = 5)

buffer Buffer Around Polygons

Description

Define a buffer zone around a polygon so that the outer points of the buffer are at a given distance
to the nearest point of the input polygon.

Usage

buffer(x, r, smoothing = 1, unit = "degree", quiet = FALSE)

Arguments

x a two-column numeric matrix giving the coordinates of the vertices of the poly-
gon.

r a single numeric value giving the distance of the buffer zone.

smoothing a numeric value coding for the smooting of the arcs of the buffer. Larger val-
ues result in less smoothing; set smoothing = Inf for no smoothing at all (see
examples).

unit a character string, one of "degree", "km", or "m". This argument defines a
coefficient multiplied by the previous one to give better results.

quiet a logical value specifying whether to print the progress of the computations.

Details

This version assumes that the coordinates in x are Euclidean (see examples for conversion from
longitude-latitude to UTM).

The code may not work very well on polygons with complicated shapes and when the buffer size
(argument r) is too large. This is still in progress.

Value

a two-column numeric matrix.

Author(s)

Emmanuel Paradis

8 buffer

Examples

data(Anduki)
r0 <- 0.005
z <- buffer(Anduki, r0)
plot(z, , "n", asp = 1, xlab = "Longitude", ylab = "Latitude")
R <- seq(r0, r0/5, length.out = 5)
COLS <- R * 1000 + 1
for (i in seq_along(R))

polygon(buffer(Anduki, R[i], quiet = TRUE), col = COLS[i])
polygon(Anduki, col = "white")
legend("topleft", , c(paste("r =", R), "Anduki Forest Reserve"),

pt.bg = c(COLS, "white"), pt.cex = 2.5, pch = 22, bty = "n")
title("Buffers around the Anduki Forest Reserve")

a more realistic application with the same data:
x <- lonlat2UTM(Anduki) # convert to UTM coordinates
z <- buffer(x, 100)
plot(z, , "n", asp = 1, xlab = "Easting", ylab = "Northing")
title("Buffer zone of 100 m (UTM coordinates)")
polygon(z, col = "lightgrey", lwd = 1/3)
polygon(x, col = "white", lwd = 1/3)

a concave hexagon
x <- rbind(c(0, 0), c(0, 1), c(0.5, 0.75),

c(1, 1), c(1, 0), c(.5, .5))
r0 <- 0.1
z <- buffer(x, r0)
plot(z, , "n", asp = 1)
R <- seq(r0, r0/10, length.out = 10)
COLS <- R * 100 + 1
for (i in seq_along(R))

polygon(buffer(x, R[i], quiet = TRUE), col = COLS[i])
polygon(x, col = "white")

Not run:
more fancy:
plot(z, , "n", asp = 1)
R <- seq(r0, r0/10, length.out = 1000)
COLS <- rainbow(1000)
for (i in seq_along(R))

polygon(buffer(x, R[i], quiet = TRUE), col = COLS[i], border = NA)
polygon(x, col = "white", border = NA)

End(Not run)

Effect of smoothing
layout(matrix(1:4, 2, 2, TRUE))
for (sm in c(1, 30, 50, Inf)) {

z <- buffer(x, 0.5, sm, quiet = TRUE)
plot(z, , "n", asp = 1, ann = FALSE, axes = FALSE,)
polygon(z, col = "lightblue")

chullPolygon 9

title(paste("smoothing =", sm))
polygon(x, col = "white")

}
layout(1)

chullPolygon Convex Hull of Polygon

Description

Finds the convex hull of a polygon.

Note that the function chull (see link below) finds the convex hull of a set of points and is about
twice slower than the present one when applied to a polygon.

Usage

chullPolygon(x, y = NULL)

Arguments

x, y the coordinates of the points given in the usual way in R.

Details

This internal implementation requires the polygon to be open and in clockwise order (a crash will
happen otherwise). Clockwise order is checked and possibly handled before calling the C code.

Value

a vector of integers which give the indices of the vertices of the input polygon defining the convex
hull.

Author(s)

Emmanuel Paradis

References

Graham, R. L. and Yao, F. F. (1983) Finding the convex hull of a simple polygon. Journal of
Algorithms, 4, 324–331. <doi:10.1016/0196-6774(83)90013-5>

See Also

chull

10 convexPolygonOverlap

Examples

XY <- rbind(c(0, 0),
c(1, 0),
c(.25, .25),
c(.5, .5),
c(1.2, .8),
c(1, .78),
c(0, 1))

(i <- chullPolygon(XY))
plot(XY, type = "n", asp = 1)
polygon(XY, lwd = 5, border = "lightgrey")
text(XY, labels = 1:nrow(XY), cex = 2/1.5)
polygon(XY[i,], border = "blue", lty = 2, lwd = 3)

convexPolygonOverlap Overlap of Two Convex Polygons

Description

Find the intersection of two convex polygons.

Usage

convexPolygonOverlap(A, B)

Arguments

A, B two two-column matrices giving the coordinates of two polygons.

Details

The intersection of two overlapping convex polygons is a single convex polygon.

The two input polygons must be in clockwise order.

Value

a two-column numeric matrix giving the coordinates of the overlap between the two input polygons.

Author(s)

Emmanuel Paradis

See Also

is.clockwise, polygonOverlap

distance_to_line 11

Examples

X <- matrix(rnorm(3800), ncol = 2)
A <- X[chull(X),]
Y <- matrix(rnorm(3800), ncol = 2)
B <- Y[chull(Y),]

plot(rbind(A, B), type = "n", asp = 1)
polygon(A)
COLS <- c("blue", "red")
text(A, labels = 1:nrow(A), font = 2, cex = 1.5, col = COLS[1])
polygon(B)
text(B, labels = 1:nrow(B), font = 2, cex = 1.5, col = COLS[2])
legend("topleft", , c("A", "B"), text.font = 2, text.col = COLS)
O <- convexPolygonOverlap(A, B)
polygon(O, border = NA, col = rgb(1, 1, 0, 0.5))

distance_to_line Distance to Line

Description

These functions calculate the shortest distances from a set of points to a line (in Euclidean coordi-
nates) or an arc (in angular coordinates).

dtl and dta are aliases to distance_to_line and distance_to_arc, respectively.

Usage

distance_to_line(x, y = NULL, x0, y0, x1, y1,
alpha = NULL, beta = NULL)

dtl(x, y = NULL, x0, y0, x1, y1, alpha = NULL, beta = NULL)
distance_to_arc(x, y = NULL, x0, y0, x1, y1, prec = 0.001)
dta(x, y = NULL, x0, y0, x1, y1, prec = 0.001)

Arguments

x, y the coordinates of the points given in the usual way in R.
x0, y0, x1, y1 the coordinates of two points defining the line similar to segments. These are

ignored if alpha and beta are given.
alpha, beta alternatively to the previous arguments, the parameters of the line (beta is the

slope).
prec the precision of the estimated distances (see details).

Details

distance_to_line uses Euclidean geometry (see references). The coordinates can be in any units.

distance_to_arc uses distances along arcs on the (Earth) sphere. The coordinates must be in
decimal degrees. The calculations are done by iterations using intervals of decreasing lengths along
the arc. The iterations are stopped when the required precision is reached (see argument prec).

12 fast2waytable

Value

a numeric vector giving the distances; distance_to_line returns them in the same unit than the
input data; distance_to_arc returns them in kilometres (km).

Author(s)

Emmanuel Paradis

References

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line

See Also

great_circle_line, geoTrans, geod

Examples

distance from the topleft corner of the unity square to the diagonal:
(d <- dtl(matrix(c(1, 0), , 2), NULL, 0, 0, 1, 1))
all.equal(d, sqrt(2)/2)

see also ?great_circle_line
x <- y <- 0:10/10
dta(x, y, 0, 0, 1, 1)

fast2waytable Fast Two-Way Contingency Tables

Description

Contingency tables of two vectors in a much faster way than the default table.

Usage

fast2waytable(x, y, levels = NULL)

Arguments

x, y two vectors of the same length with integers (or values that can be coerced to).

levels the unique values found in both vectors.

Details

If levels is known (and given), the running times are considerably shorter (up to several ten times;
see examples).

NA’s are not handled in this version.

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line

geod 13

Value

a square matrix with the counts.

Author(s)

Emmanuel Paradis

See Also

table, tabulate

Examples

z <- 11:20 * 10L
n <- 13e6
x <- sample(z, n, TRUE)
y <- sample(z, n, TRUE)
system.time(res1 <- fast2waytable(x, y)) # ~ 0.4 sec
system.time(res2 <- fast2waytable(x, y, z)) # ~ 0.02 sec
system.time(res3 <- table(x, y)) # ~ 1.8 sec
all(res1 == res2)
all(res1 == res3)

geod Geodesic Distances

Description

This function calculates geodesic (or great-circle) distances between pairs of points with their lon-
gitudes and latitudes given in (decimal) degrees.

Usage

geod(lon, lat = NULL, R = 6371)

Arguments

lon either a vector of numeric values with the longitudes in degrees, or, if lat =
NULL, a matrix giving the longitudes (first column) and the latitudes (second
column).

lat a vector with the latitudes.

R the mean radius of the Earth (see details).

Details

The default value of R is the mean radius of the Earth which is slightly smaller than the radius at the
equator (6378.1 km).

14 geoTrans

Value

a numeric symmetric matrix with the distances between pairs of points in kilometres.

Author(s)

Emmanuel Paradis

References

https://en.wikipedia.org/wiki/Great-circle_distance

https://en.wikipedia.org/wiki/Earth

https://en.wikipedia.org/wiki/Haversine_formula

See Also

geoTrans, as.dist

Examples

the distance between 0N 0E and 0N 180E...
geod(c(0, 180), c(0, 0)) # ~ 20015.09 km
... the same using the radius of the Earth at the equator:
geod(c(0, 180), c(0, 0), 6378.1) # ~ 20037.39 km
The same comparison for two points 5 degrees apart:
geod(c(0, 5), c(0, 0)) # ~ 555.9746 km
geod(c(0, 5), c(0, 0), 6378.1) # ~ 556.5942 km

geoTrans Manipulate Geographical Coordinates

Description

geoTrans transforms geographical coordinates in degrees, minutes and seconds input as characters
(or a factor) into numerical values in degrees. geoTrans2 does the reverse operation.

Usage

geoTrans(x, degsym = NULL, minsym = "'", secsym = "\"")
geoTrans2(lon, lat = NULL, degsym = NULL, minsym = "'",

secsym = "\"", dropzero = FALSE, digits = 3,
latex = FALSE)

https://en.wikipedia.org/wiki/Great-circle_distance
https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Haversine_formula

geoTrans 15

Arguments

x a vector of character strings storing geographical coordinates; this can be a factor
with the levels correctly set.

degsym, minsym, secsym
a single character giving the symbol used for degrees, minutes and seconds,
respectively.

lon either a vector of numeric values with the longitudes in degrees, or, if lat =
NULL, a matrix (or a data frame) giving the longitudes in the first column and the
latitudes in the second column.

lat a vector with the latitudes.

dropzero a logical value: if TRUE, the number of arc-seconds is dropped if it is zero;
similarly for the number of arc-minutes if the number of arc-seconds is also
zero.

digits an integer used for rounding the number of arc-seconds.

latex a logical value: if TRUE, the returned character is formatted with LaTeX code.

Details

geoTrans should be robust to any pattern of spacing around the values and the symbols (see exam-
ples). If the letter S, W, or O is found is the coordinate, the returned value is negative. Note that
longitude and latitude should not be mixed in the same character strings.

geoTrans2 can be used with cat (see examples).

The default for degsym (NULL) is because the degree symbol (°) is coded differently in different
character encodings. By default, the function will use the appropriate character depending on the
system and encoding used.

Value

geoTrans returns a numeric vector with the coordinates in degrees (eventually as decimal values).
geoTrans2 returns a character vector.

Author(s)

Emmanuel Paradis

See Also

geod

Examples

coord <- c("N 43°27'30\"", "N43°27'30\"", "43°27'30\"N",
"43° 27' 30\" N", "43 ° 27 ' 30 \" N",
"43°27'30\"", "43°27.5'")

cat(coord, sep = "\n")
geoTrans(coord)
geoTrans("43 D 27.5'", degsym = "D")

16 great_circle_line

geoTrans("43° 27' 30\" S")

XL <- c(100.6417, 102.9500)
YL <- c(11.55833, 14.51667)
cat(geoTrans2(XL, YL, dropzero = TRUE), sep = "\n")
cat(geoTrans2(XL, YL, latex = TRUE), sep = "\\\n")

great_circle_line Great Circle Line

Description

This function calculates the coordinates of the line on the surface of a sphere between two points.
All coordinates are in decimal degrees.

gcl is simply an alias.

Usage

great_circle_line(x0, y0, x1, y1, linear = FALSE, npoints = 100)
gcl(x0, y0, x1, y1, linear = FALSE, npoints = 100)

Arguments

x0, y0, x1, y1 the coordinates of the two points similar to segments.

linear a logical value.

npoints an integer giving the number of points where the coordinates are calculated
(should be at least two).

Details

The interval between x0 and x1 is split into regular segments, then the latitudes are computed, by
default, using a great circle formula (Chamberlain and Duquette, 2007).

If linear = TRUE, the coordinates are treated as linear (i.e., Euclidean).

Value

a numeric matrix with two columns and colnames ’x’ and ’y’.

Author(s)

Emmanuel Paradis

References

Chamberlain, R. G. and Duquette, W. H. (2007) Some algorithms for polygons on a sphere. JPL
Open Repository. <doi:2014/41271>

HausdorffDistance 17

See Also

geod

Examples

X1 <- 3; Y1 <- 49 # Paris
X2 <- 101; Y2 <- 13 # Bangkok
if (require(maps)) map() else
plot(c(-180, 180), c(-90, 90), "n")
text(X1, Y1, "Paris")
text(X2, Y2, "Bangkok")
lines(gcl(X1, Y1, X2, Y2), col = "blue", lwd = 2)
lines(gcl(X1, Y1, X2, Y2, linear = TRUE), col = "red", lwd = 2)

assess the error implied by using linear interpolation for the
diagonal of a 1 degree by 1 degree square near the equator:
xya <- gcl(0, 0, 1, 1)
xyb <- gcl(0, 0, 1, 1, TRUE)
the error in degrees:
error <- xya[, "y"] - xyb[, "y"]
plot(xya[, "x"], error * 3600, "o",

xlab = "Longitude (degrees)", ylab = "Error (arc-seconds)")

max (vertical) distance between these 2 curves:
geod(c(0.5, 0.5), c(0.5, 0.5 + max(error))) # ~6.5 m
NOTE: the actual shortest (orthogonal) distance
between these two curves is ~4.6 m
(assuming the vertical distance helps to define a rectangular
triangle, we have: 0.5 * sqrt(6.5^2 * 2)) ~ 4.6)

NOTE2: dividing the coordinates by 10 results in dividing
these deviations by 1000

HausdorffDistance Hausdorff Distance

Description

Computes the Hausdorff distance between two polygons. The distances can be directed (i.e., asym-
metric) or not.

Usage

HausdorffDistance(A, B, directed = FALSE)

Arguments

A, B two two-column matrices giving the coordinates of two polygons.

directed a logical value. By default, the undirected distance is returned.

18 haveOverlap

Details

If directed = TRUE, the order of the two polygons is important.

Value

a single numeric value.

Author(s)

Emmanuel Paradis

Examples

A <- cbind(c(0, 1, 1, 0), c(0, 0, 1, 1))
B <- A
B[, 1] <- B[, 1] + 2
B[c(1, 4), 1] <- 1.15

plot(rbind(A, B), type = "n", asp = 1)
COLS <- c("blue", "red")
polygon(A, border = COLS[1], lwd = 3)
polygon(B, border = COLS[2], lwd = 3)
text(mean(A[, 1]), mean(A[, 2]), "A", font = 2, col = COLS[1])
text(mean(B[, 1]), mean(B[, 2]), "B", font = 2, col = COLS[2])

(H <- HausdorffDistance(A, B))
(HAB <- HausdorffDistance(A, B, TRUE))
(HBA <- HausdorffDistance(B, A, TRUE))
arrows(0, 0.75, 1.15, 0.75, length = 0.1, code = 3)
text(0.5, 0.85, paste("H(A->B)", "=", HAB))
arrows(1, 0.15, 3, 0.15, length = 0.1, code = 3)
text(2, 0.25, paste("H(B->A)", "=", HBA))
text(1.5, -0.5, paste("H = max(H(A->B), H(B->A))", "=", H))

haveOverlap Compare Two Polygons

Description

These functions compare two polygons.

Usage

haveOverlap(A, B)
samePolygons(A, B, digits = 10)

Arguments

A, B Two two-column matrices giving the coordinates of two polygons.
digits the number of digits considered when comparing the coordinates.

is.insidePolygon 19

Value

a single logical value

Author(s)

Emmanuel Paradis

See Also

redundantVertices

is.insidePolygon Test If a Point Is Inside a Polygon

Description

This function tests if a point is inside a polygon.

Usage

is.insidePolygon(XY, points)

Arguments

XY A two-column matrix giving the coordinates of a polygon.

points a vector with two values giving the coordinates of a point, or a matrix with two
columns.

Details

The algorithm is based on “ray-tracing”: a segment is traced between points and an arbitrary point
far from the polygon. If this segment intersects an odd number of edges of the polygon, then points
is inside the polygon.

The polygon must be open and can be in either clockwise or counterclockwise order. If the polygon
is closed, it is modified internally without warning (the original polygon is not modified).

Value

a logical vector indicating whether each point is inside the polygon defined by XY.

Author(s)

Emmanuel Paradis

See Also

is.open

20 lonlat2ECEF

Examples

XY <- rbind(c(0, 0), c(0, 1), c(1, 1), c(1, 0))
stopifnot(is.insidePolygon(XY, c(0.5, 0.5)))
stopifnot(!is.insidePolygon(XY, c(1.5, 1.5)))

lonlat2ECEF Conversions of Coordinates

Description

Conversion between lon-lat and ECEF (Earth-centered, Earth-fixed) coordinates.

Usage

lonlat2ECEF(lon, lat = NULL, alt = 0, as.matrix = TRUE)
ECEF2lonlat(x, y = NULL, z = NULL)

Arguments

lon, lat coordinates given as two vectors or as a matrix (or a data frame).

alt a vector of altitudes.

as.matrix a logical value specifying whether to return the results in a matrix. The default
is to return them in a list.

x, y, z three numeric vectors of the same length, or only x as a three-column matrix.

Details

This function uses an ellopsoid model of Earth shape with the following parameters: equatorial
radius = 6,378,137 m, polar radius = 6,356,752 m.

Value

lonlat2ECEF returns a matrix with three columns or a list with three vectors; ECEF2lonlat returns
a matrix with three columns.

Author(s)

Emmanuel Paradis

References

Blewitt, G. (2024) An improved equation of latitude and a global system of graticule distance
coordinates. Journal of Geodesy, 98, 6.

lonlat2UTM 21

Examples

From Blewitt's Table 1:
DF <- expand.grid(alt = c(1, 4, 10, 40) *1e3,

lat = seq(15, 75, 15),
lon = 0)

DF <- as.matrix(DF[3:1])

x <- lonlat2ECEF(DF[, -3], alt = DF[, 3], as.matrix = TRUE)

DFbis <- ECEF2lonlat(x)
xbis <- lonlat2ECEF(DFbis[, -3], alt = DFbis[, 3], as.matrix = TRUE)

summary(x - xbis)
summary(DF - DFbis)

lonlat2UTM Conversions of Coordinates

Description

Functions to convert coordinates between angular (longitude, latitude) and UTM systems.

Usage

lonlat2UTM(lon, lat = NULL, details = FALSE)
UTM2lonlat(x, y = NULL, zone = NULL, hemisphere = "N")

Arguments

lon, lat coordinates given as two vectors or as a matrix (or a data frame).

details a logical value indicating whether to return information on the UTM zones (see
below).

x, y either x is a data frame with four columns (as output from lonlat2UTM), or a
matrix or a data frame giving the UTM coordinates in the standard way.

zone, hemisphere
an integer and a character string specifying the UTM square; can be single values
(in which case they are recycled for all coordinates).

Details

lonlat2UTM works for all UTM zones. If the coordinates cover several UTM zones and/or hemi-
spheres, the option details is switched to TRUE.

The formulas are in Karney (2011) originally from Kr\"uger (1912). The error is less than one
micrometre. Karney (2011) presents algorithms that require arbitrary precision real numbers for
errors of a few nanometres.

22 polygon2mask

Value

a matrix or a data frame.

Author(s)

Emmanuel Paradis

References

Karney, C. F. F. (2011) Transverse Mercator with an accuracy of a few nanometers. Journal of
Geodesy, 85, 475–485.

Kr\"uger, J. H. L. (1912) Konforme Abbildung des Erdellipsoids in der Ebene. New Series 52.
Royal Prussian Geodetic Institute, Potsdam.

polygon2mask Convert Polygon to a Raster Mask

Description

Takes a polygon and returns a matrix with a mask that can be input into a raster.

Usage

polygon2mask(XY, extent = NULL, k = 360,
value = 1L, backgrd = 0L)

Arguments

XY A two-column matrix giving the coordinates of a polygon.

extent a vector with four numeric values giving the extent of the raster. By default,
values are determined to minimally cover the polygon.

k an integer value giving the number of pixels per unit (i.e., the inverse of the
resolution of the raster). The resolution is the same in both directions.

value the value given to the pixels inside the polygon (converted to integer).

backgrd idem for the pixels outside the polygon.

Details

The mask is returned as a matrix which is filled rowwise (in agreement with the convention used in
rasters) and can be input into functions in terra (e.g., rast()).

polygon2mask does basically the same operation than terra::rasterize() but is faster and can
produce a vector for masking raster data.

The output matrix is row-filled, unlike matrices in R which are column-filled. It should be trans-
posed before passed to terra::rast(), or its dim attribute can be ignored if used as a mask to a
raster (which is also usually row-filled).

polygonOverlap 23

Value

a matrix stored as integers; the dimensions of this matrix give the size of the raster.

Note

The code is still in development. The version in tigers 0.1-3.3 has larger C buffers which should
make the overall code more stable.

Author(s)

Emmanuel Paradis

References

Nievergelt, J. and Preparata, F. P. (1982) Plane-sweep algorithms for intersecting geometric figures.
Communications of the ACM, 25, 739–747. <doi:10.1145/358656.358681>.

Examples

from ?chullPolygon:
XY <- rbind(c(0, 0),

c(1, 0),
c(.25, .25),
c(.5, .5),
c(1.2, .8),
c(1, .78),
c(0, 1))

layout(matrix(1:9, 3, 3, TRUE))
k <- 2
for (i in 1:9) {

msk <- polygon2mask(XY, k = k)
d <- dim(msk)
image(1:d[1], 1:d[2], msk)
dm <- paste(d, collapse = "x")
title(paste("k =", k, ", dim =", dm))
k <- k * 2

}

layout(1)

polygonOverlap Decomposition and Overlap of Polygons

Description

decomposePolygon decomposes a polygon into convex subpolygons.

polygonOverlap finds the intersection of two polygons.

24 polygonOverlap

Usage

decomposePolygon(x, y = NULL, method = 1, quiet = FALSE)
polygonOverlap(A, B)

Arguments

x, y the coordinates of the points given in the usual way in R.

method the method used for triangulation (see triangulate).

quiet if the polygon is convex, a warning message is issued unless this option is
switched to TRUE.

A, B two two-column matrices giving the coordinates of two polygons.

Details

Both functions require the polygons to be in counterclockwise order (which is checked and arranged
internally if needed).

The method in decomposePolygon is from Hertel and Mehlhorn (1983).

The method in polygonOverlap is based on first decomposing the two polygons into convex sub-
polygons, then computing their intersections with convexPolygonOverlap. The results is a list of
polygons. A different algorithm is sketched in Chamberlain and Duquette (2007).

Value

decomposePolygon returns a two-column matrix with integers where each row gives the indices
of two vertices of the input polygon defining a diagonal; the set of these diagonals define convex
subpolygons.

polygonOverlap returns a list of polygons each defined by a two-column numeric matrix giving
the coordinates of the vertices.

Note

These two functions are still in development.

Author(s)

Emmanuel Paradis

References

Chamberlain, R. G. and Duquette, W. H. (2007) Some algorithms for polygons on a sphere. JPL
Open Repository. <doi:2014/41271>

Hertel, S. and Mehlhorn, K. (1983) Fast triangulation of simple polygons. In: Foundations of
Computation Theory. Ed. Karpinski, M. Springer, Berlin, pp. 207–218. <doi:10.1007/3-540-
12689-9_105>

See Also

convexPolygonOverlap, is.clockwise

random_point_in_triangle 25

Examples

same polygon than in ?triangulate
XY <- rbind(c(0, 0), c(1, 0), c(.25, .25), c(.5, .5),

c(1.2, .8), c(1, .78), c(0, 1))
decomposePolygon(XY) # similar to the output of triangulate()
"lift up" one vertex:
XYb <- XY
XYb[6, 2] <- 1.2
decomposePolygon(XYb) # one diagonal less

A is concave, B is convex:
A <- rbind(c(0, 1.5), c(2, 1), c(0.5, 1.5), c(2, 2))
B <- rbind(c(1, 0), c(3, 0), c(3, 3), c(1, 3))
AB <- polygonOverlap(A, B)
plot(rbind(A, B), , "n", asp = 1)
polygon(A)
polygon(B)
lapply(AB, polygon, col = "gold")

random_point_in_triangle

Random Points in Triangle

Description

Generates random points inside a triangle using Osada et al.’s (2002, Sect. 4.2) method.

Usage

random_point_in_triangle(n, X, rfun1 = runif, rfun2 = runif)
rpit(n, X, rfun1 = runif, rfun2 = runif)

Arguments

n an integer giving the number of points to generate.

X a numeric matrix with 3 rows and 2 columns giving the coordinates of the trian-
gle.

rfun1 a function generating random values in [0,1]. By default, the values are gener-
ated under a uniform distribution.

rfun2 same as the previous argument (see details).

Details

By default, the points are uniformly distributed in the triangle. The Beta function offers an inter-
esting alternative to generate points concentrated in a specific part of the triangle (see examples).

26 redundantVertices

Value

A numeric matrix with n rows and two columns giving the coordinates of the points.

Author(s)

Emmanuel Paradis

References

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002) Shape distributions. ACM Trans-
actions on Graphics, 21, 807–832. <doi:10.1145/571647.571648>

Examples

a random triangle in [0,1]^2:
P <- matrix(runif(6), 3, 2)

n points uniformly distributed in the triangle P:
n <- 10000
x <- rpit(n, P)

layout(matrix(1:2, 1))

plot(P, type = "n", asp = 1)
polygon(P, col = "yellow", border = NA)
points(x, pch = ".", col = "blue")

using Beta distributions:
foo <- function(n) rbeta(n, 1, 10)
bar <- function(n) rbeta(n, 1, 1)
y <- rpit(n, P, foo, bar)

plot(P, type = "n", asp = 1)
polygon(P, col = "yellow", border = NA)
points(y, pch = ".", col = "blue")

layout(1)

redundantVertices Redundant Vertices in a Polygon

Description

Tests and optionally correct for redundant vertices in a polygon.

The other functions test some features of a polygon.

revPolygon() reverses the order of the vertices (i.e., swiching between clockwise and counter-
clockwise orders).

redundantVertices 27

Usage

redundantVertices(x, tol = 1e-8, check.only = FALSE, colinear = TRUE)
is.clockwise(x)
is.convex(x)
is.open(x)
revPolygon(x, copy = TRUE)

Arguments

x a two-column matrix.

tol the tolerance to consider two vertices identical.

check.only a logical value.

colinear a logical value.

copy by default, a new polygon is created; if FALSE, the vertex order is reversed within
the same object.

Details

If check.only is TRUE, the first function prints the diagnostics and nothing is returned. Otherwise,
the possibly corrected matrix is returned.

Two types of redundant vertices are considered: those that are close to another, and those which
are colinear. If the option colinear = FALSE is set, only the first type is considered. Colinearity is
checked only in contiguous (triplet) vertices.

Value

redundantVertices returns a two-column numeric matrix, or nothing if check.only = TRUE (the
diagnostics are printed in the console).

is.clockwise, is.convex, and is.open return a single logical value.

revPolygon returns by default a two-column numeric matrix, or nothing if copy = FALSE (the first
argument is modified).

Author(s)

Emmanuel Paradis

References

The method for is.clockwise is from:

https://en.wikipedia.org/wiki/Curve_orientation

See Also

haveOverlap

https://en.wikipedia.org/wiki/Curve_orientation

28 RMA

RMA Reduced Major Axis

Description

Computes the coefficients of the reduced major axis (RMA) of a set of points.

Usage

RMA(x, y = NULL)

Arguments

x, y the coordinates of the points given in the usual way in R.

Details

The RMA is found by solving a polynomial equation of degree two, so there are actually two
solutions which are both returned. It is usually straightforward to find the appropriate solution.

Value

a matrix with two rows and two columns named alpha and beta for the intercepts and slopes, re-
spectively.

Author(s)

Emmanuel Paradis

References

https://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html

Examples

x <- 1:1000
y <- x + rnorm(1000, 5)
RMA(x, y) # same than RMA(cbind(x, y))

https://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html

rose 29

rose Draw a Compass

Description

Draw a compass on a map or a plot.

Usage

rose(x, y, size = 1, width = size/4, cols = c("grey10", "white"),
labels = c("N", "S", "E", "W"), offset = 0, ...)

Arguments

x, y coordinates of the center of the compass given as two vectors of length one (in
user coordinates).

size the length of the needles (in the same units than the user coordinates).

width the width of the needles at the bottom; by default, one fourth of the previous.

cols the colours for each side of the needles.

labels the text printed at the tips of the needles.

offset the space between the labels and the tips of the needles.

... further arguments passed to text to format the labels.

Details

To not print the directions, set labels = rep("", 4).

Author(s)

Emmanuel Paradis

triangulate Triangulate a Polygon

Description

Performs the decomposition of a polygon into triangles.

Usage

triangulate(x, y = NULL, method = 1)

30 triangulate

Arguments

x, y the coordinates of the points given in the usual way in R.

method an integer between 1 and 4 specifying the triangulation method.

Details

The following methods are available:

• 1: the triangles are created in successive order from the first appropriate angle (i.e., an ear)
encountered in the polygon.

• 2: the triangles are created to favour thin triangles.

• 3: the triangles are created to favour fat triangles.

• 4: the triangles are created to favour regular-looking triangles based on their determinant.

These methods have different requirements: method 1 needs the polygon to be closed, whereas the
other methods need it to be open; method 2 needs the polygon to be in counterclockwise order, and
method 3 needs it to be in clockwise order (the other methods are not sensitive to this order). These
requirements are checked before performing the triangulation and the polygon is changed internally
(without warning since the original polygon is not modified) if necessary.

Value

a three-column matrix giving the indices of the vertices in each triangle (i.e., each row a is a trian-
gle).

Note

The internal codes need to be checked and tested again.

Author(s)

Emmanuel Paradis

References

Toussaint, G. (1991) Efficient triangulation of simple polygons. Visual Computer, 7, 280–295.
<doi:10.1007/BF01905693>

Examples

XY <- rbind(c(0, 0),
c(1, 0),
c(.25, .25),
c(.5, .5),
c(1.2, .8),
c(1, .78),
c(0, 1))

(tri <- triangulate(XY))
plot(XY, type = "n", asp = 1)

trilinear2Cartesian 31

for (i in 1:nrow(tri))
polygon(XY[tri[i,],], border = "white", col = "green", lwd = 2)

polygon(XY, lwd = 4, border = "lightgrey")
text(XY, labels = 1:nrow(XY), cex = 1.2)

trilinear2Cartesian Trilinear Coordinates

Description

trilinear2Cartesian calculates the coordinates of a point inside a triangle given three values
interpreted as proportions.

Cartesian2trilinear does the reverse operation.

Usage

trilinear2Cartesian(p, X)
Cartesian2trilinear(xy, X)

Arguments

p a vector with three numeric values (see details).

X a numeric matrix with 3 rows and 2 columns giving the coordinates of the trian-
gle.

xy a vector with two numeric values (Cartesian coordinates).

Details

The values in p do not need to sum to one since they are scaled internally.

The triangle defined by X can be of any type. The coordinates returned by trilinear2Cartesian
is always inside the triangle.

Cartesian2trilinear does not check if xy is inside the triangle.

Value

trilinear2Cartesian returns a numeric matrix with a single row and two columns giving the
coordinates of the point.

Cartesian2trilinear returns a numeric matrix with a single row and three columns.

Author(s)

Emmanuel Paradis

References

https://en.wikipedia.org/wiki/Trilinear_coordinates

https://en.wikipedia.org/wiki/Trilinear_coordinates

32 wl2col

Examples

rectangular triangle (counterclockwise):
X <- rbind(c(0, 0), c(0, 1), c(1, 0))
plot(X, , "n", asp = 1)
polygon(X)

h <- sqrt(2) # hypothenuse length

points(trilinear2Cartesian(c(1, 1, 1), X)) # incenter
points(trilinear2Cartesian(c(1, h, h), X), pch = 2) # centroid
points(trilinear2Cartesian(c(h, 1, 1), X), pch = 3) # symmedian point
the 3 midpoints:
points(trilinear2Cartesian(c(0, h, h), X), pch = 7)
points(trilinear2Cartesian(c(1, 0, h), X), pch = 7)
points(trilinear2Cartesian(c(1, h, 0), X), pch = 7)

legend("topright", ,
c("incenter", "centroid", "symmedian point", "midpoints"),
pch = c(1:3, 7))

f <- c(0.1, 0.3, 0.6)
o <- trilinear2Cartesian(f, X)
p <- Cartesian2trilinear(o, X)
p - f # < 1e-15
stopifnot(all.equal(as.vector(p), f))

wl2col Wavelengths to Colours

Description

Conversion from wavelengths to colours.

Usage

wl2col(x, gamma = 0.8, RGB = FALSE)
spectrum2col(spec, RGB = FALSE, no.warn = TRUE, color.system = 3)
BlackBodySpectrum(x, Temp = 300)

Arguments

x a numeric vector with wavelengths in nanometers (nm).

gamma parameter for correcting the transitions. If gamma = 1, then the transitions are
linear (see examples).

RGB a logical value. By default, colours (in HTML code) are returned. If RGB = TRUE,
a matrix with three columns is returned.

spec a numeric vector with 81 values giving the (relative) intensity of the different
wave lengths between 380 nm and 780 nm (see examples).

wl2col 33

no.warn a logical value. If TRUE and some approximate calculations were performed in
the C routine, a warning message is issued.

color.system a single integer between 1 and 6 specifying the colour system (see details).

Temp temperature in Kelvins (K) of the black body.

Details

Computations are mainly performed by C and Fortran codes (see References).

The argument spec gives the (relative) intensity of visible light between 380 nm and 780 nm in
intervals with a bandwith of 5 nm (i.e., [380–385], [385–390], . . . , [775-780]). The returned value
is the perceived colour of the given spectrum. It could happen that some calculations were approx-
imate which is done silently unless no.warn = FALSE.

The six colour systems are: (1) NTSC, (2) EBU (PAL/SECAM), (3) SMPTE, (4) HDTV, (5) CIE,
and (6) CIE REC 709.

BlackBodySpectrum calculates the emittance at specified wavelength(s) of a black body of temper-
ature Temp using Planck’s law.

Value

wl2col and spectrum2col return by default a vector of mode character with colours in HTML
code. If RGB = TRUE, they return a matrix with the values (between 0 and 1) of red, green, and blue
arranged in a three-column matrix. If the input x has names, these are used in the returned object
(as names or rownames).

BlackBodySpectrum returns a numeric vector.

Author(s)

Emmanuel Paradis, John Walker, Dan Bruton

References

Bruton, D. (1996) Approximate RGB values for visible wavelengths. http://www.physics.sfasu.
edu/astro/color/spectra.html

Planck, M. (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der
Physik, 309, 553–563. (English translation: http://web.ihep.su/dbserv/compas/src/planck01/
eng.pdf)

Walker, J. (1996) Color rendering of spectra. https://www.fourmilab.ch/documents/specrend/

Examples

wl <- 370:790
COLS <- c("red", "green", "blue")
if (interactive()) layout(matrix(1:3, 3))
matplot(wl, wl2col(wl, , TRUE), "l", col = COLS, lty = 1, lwd = 3)
title("gamma = 0.8 (default)")
matplot(wl, wl2col(wl, 1, TRUE), "l", col = COLS, lty = 1, lwd = 3)
title("gamma = 1")
matplot(wl, wl2col(wl, 1/3, TRUE), "l", col = COLS, lty = 1, lwd = 3)

http://www.physics.sfasu.edu/astro/color/spectra.html
http://www.physics.sfasu.edu/astro/color/spectra.html
http://web.ihep.su/dbserv/compas/src/planck01/eng.pdf
http://web.ihep.su/dbserv/compas/src/planck01/eng.pdf
https://www.fourmilab.ch/documents/specrend/

34 wl2col

title("gamma = 1/3")
layout(1)

spec <- numeric(81)
spec[2] <- 1
names(spec) <- seq(380, 780, 5)
sapply(1:6, function(i) spectrum2col(spec, TRUE, color.system = i))

WL <- 380:780
xlab <- "Wavelength (nm)"
ylab <- expression("Emittance (W."*m^{-2}*")")
plot(WL, BlackBodySpectrum(WL, 306), type = "l", xlab = xlab,

ylab =ylab, log = "")
lines(WL, BlackBodySpectrum(WL, 303), lty = 2)
legend("topleft", legend = paste(c(306, 303) - 273, "degrees C"), lty = 1:2)

vector of wavelengths:
wl <- seq(382.5, by = 5, length.out = 81)
spectrum2col(BlackBodySpectrum(wl, 310), TRUE)
spectrum2col(BlackBodySpectrum(wl, 3100), TRUE)
spectrum2col(BlackBodySpectrum(wl, 31000), TRUE)

wl <- 10:1e5
col <- wl2col(wl)
plot(wl, BlackBodySpectrum(wl, 6000), "n", log = "xy", ylim = c(1, 1e14),

xaxs = "i", xlab = xlab, ylab = ylab)
s <- col != "#000000" # do not show the black lines
abline(v = wl[s], col = col[s])
lines(wl, BlackBodySpectrum(wl, 300))
lines(wl, BlackBodySpectrum(wl, 3000))
lines(wl, BlackBodySpectrum(wl, 6000))
text(c(3000, 240, 200), c(5e6, 6e10, 5e13), paste(c(300, 3000, 6000), "K"))

Index

∗ aplot
axisMap, 4
rose, 29

∗ datagen
random_point_in_triangle, 25

∗ datasets
Anduki, 3

∗ manip
area, 3
barycoords, 5
buffer, 7
chullPolygon, 9
convexPolygonOverlap, 10
distance_to_line, 11
fast2waytable, 12
geod, 13
geoTrans, 14
great_circle_line, 16
HausdorffDistance, 17
haveOverlap, 18
is.insidePolygon, 19
lonlat2ECEF, 20
lonlat2UTM, 21
polygon2mask, 22
polygonOverlap, 23
redundantVertices, 26
triangulate, 29
trilinear2Cartesian, 31
wl2col, 32

∗ package
tigers-package, 2

∗ robust
RMA, 28

Anduki, 3
area, 3
as.dist, 14
axisMap, 4

barycoords, 5

Beta, 25
BlackBodySpectrum (wl2col), 32
buffer, 7

Cartesian2trilinear
(trilinear2Cartesian), 31

cat, 15
chull, 9
chullPolygon, 9
convexPolygonOverlap, 10, 24

decomposePolygon (polygonOverlap), 23
distance_to_arc (distance_to_line), 11
distance_to_line, 11
dta (distance_to_line), 11
dtl (distance_to_line), 11

ECEF2lonlat (lonlat2ECEF), 20

fast2waytable, 12

gcl (great_circle_line), 16
geod, 4, 12, 13, 15, 17
geoTrans, 12, 14, 14
geoTrans2 (geoTrans), 14
great_circle_line, 12, 16

HausdorffDistance, 17
haveOverlap, 18, 27

is.clockwise, 5, 10, 24
is.clockwise (redundantVertices), 26
is.convex (redundantVertices), 26
is.insidePolygon, 19
is.open, 5, 19
is.open (redundantVertices), 26

lonlat2ECEF, 20
lonlat2UTM, 21

polygon2mask, 22

35

36 INDEX

polygon2raster (polygon2mask), 22
polygonOverlap, 10, 23

random_point_in_triangle, 25
redundantVertices, 19, 26
revPolygon (redundantVertices), 26
RMA, 28
rose, 29
rpit (random_point_in_triangle), 25

samePolygons (haveOverlap), 18
segments, 11, 16
spectrum2col (wl2col), 32

table, 12, 13
tabulate, 13
tigers (tigers-package), 2
tigers-package, 2
triangulate, 24, 29
trilinear2Cartesian, 5, 6, 31

UTM2lonlat (lonlat2UTM), 21

wl2col, 32

	tigers-package
	Anduki
	area
	axisMap
	barycoords
	buffer
	chullPolygon
	convexPolygonOverlap
	distance_to_line
	fast2waytable
	geod
	geoTrans
	great_circle_line
	HausdorffDistance
	haveOverlap
	is.insidePolygon
	lonlat2ECEF
	lonlat2UTM
	polygon2mask
	polygonOverlap
	random_point_in_triangle
	redundantVertices
	RMA
	rose
	triangulate
	trilinear2Cartesian
	wl2col
	Index

